Sodium trans-Bis(\boldsymbol{N}-isopropyliminodiacetato)chromate(III) Dihydrate

By Dietrich Mootz and Hartmut Wunderlich
Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstrasse 1, 4000 Düsseldorf, Federal Republic of Germany

(Received 19 November 1979; accepted 12 December 1979)

Abstract. $\mathrm{Na}\left[\mathrm{Cr}\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}^{+} . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Cr}-$ $\mathrm{N}_{2} \mathrm{O}_{8}^{-} .2 \mathrm{H}_{2} \mathrm{O}$, triclinic, $P 1, a=9.779(1), b=$ 7.922 (1), $c=6.968$ (1) \AA, $\alpha=108.56$ (1), $\beta=$ 95.76 (1), $\gamma=107.40(1)^{\circ}, Z=1, D_{m}=1.614, D_{x}=$ $1.593 \mathrm{Mg} \mathrm{m}^{-3}, M_{r}=457.4, \mu($ Mo $K \alpha)=0.71 \mathrm{~mm}^{-1}$, $R=0.046$. The point symmetry of the complex anion is $\overline{1}$. The coordination of the Cr atom is distorted octahedral with the two N atoms in a trans configuration. The one independent water molecule forms weak hydrogen bonds. Preliminary results have been reported elsewhere [Wunderlich \& Mootz (1977). Fourth European Crystallographic Meeting, Oxford, England. Abstract PI.64].

Introduction. The synthesis and characterization of potassium trans-bis(N-alkyliminodiacetato)chromates(III) have been reported by Wernicke, Schmidtke \& Hoggard (1977). Red crystals of the title compound with Na^{+}as the cation were prepared accordingly and grown from aqueous solution. The space group is $P 1$ or $P \overline{1}$. The latter was confirmed by the structure determination. The intensities of all symmetry-independent reflections up to $2 \theta=55^{\circ}$ were determined with an automatic diffractometer (Syntex $P 2_{1}$) and a variable $\theta: 2 \theta$ scan (Mo $K \alpha$ radiation, crystal monochromator). 1793 of the 2142 measured intensities were classified as observed ($F>3 \sigma_{F}$) and were used for the structure determination. The phase problem was solved by the Patterson function. The Cr atom at $0,0,0$ and the Na atom at $0, \frac{1}{2}, \frac{1}{2}$ cause the mean F_{o} for $k+l=$ even to be about 40% greater than that for $k+l=$ odd. All H atoms were located in difference syntheses and included with isotropic temperature factors in the final refinement (186 parameters), converging at $R=0.046(0.061)$ and $R_{w}=0.051$ (0.053) for the observed (all) reflections. Scattering factors were taken from Cromer \& Waber (1974). Weights were derived from counting statistics by $1 / w=$ $\sigma_{F}^{2}+0.0004 F^{2}$. The final positional parameters are listed in Tables 1 and 2.* All calculations were carried

[^0]Table 1. Positional parameters $\left(\times 10^{4}\right)$ for the nonhydrogen atoms with e.s.d.'s in parentheses as resulting from the least-squares refinement
Equivalent isotropic temperature factors $B_{\text {eq. }}\left(\AA^{2}\right)$ have been calculated by $B_{\text {eq. }}=\frac{1}{3}\left(B_{11} a^{* 2} a^{2}+B_{12} a^{*} b^{*} a b \cos \gamma+\ldots.\right)$.

	x	y	z	$B_{\text {eq. }}$
		y		
Na	0	5000	5000	2.43
Cr	0	0	0	1.09
$\mathrm{O}(1)$	$-1015(2)$	$-1972(3)$	$1005(3)$	1.96
$\mathrm{O}(2)$	$574(2)$	$-1791(3)$	$-2165(3)$	1.86
$\mathrm{O}(5)$	$-719(3)$	$-4014(3)$	$2420(4)$	2.71
$\mathrm{O}(6)$	$2522(3)$	$-2317(3)$	$-3232(3)$	2.73
N	$1907(3)$	$177(3)$	$1753(4)$	1.41
$\mathrm{C}(1)$	$-218(3)$	$-2675(4)$	$1860(4)$	1.72
$\mathrm{C}(2)$	$1429(3)$	$-1799(4)$	$2158(5)$	1.85
$\mathrm{C}(3)$	$2890(3)$	$-128(4)$	$241(4)$	1.82
$\mathrm{C}(4)$	$1966(3)$	$-1511(4)$	$-1887(4)$	1.77
$\mathrm{C}(5)$	$2616(3)$	$1700(4)$	$3786(4)$	1.95
$\mathrm{C}(6)$	$3994(4)$	$1600(6)$	$4924(6)$	2.99
$\mathrm{C}(7)$	$2960(4)$	$3587(5)$	$3492(6)$	2.55
OW	$6039(4)$	$4110(6)$	$506(7)$	5.30

Table 2. Positional parameters ($\times 10^{3}$) and temperature factors $\left(\AA^{2}\right)$ for the H atoms with e.s.d.'s in parentheses

The H atoms are bonded to the O and C atoms with the identical. first digit of their numbering.

	x	y	z	B
H(21)	193 (4)	-164 (5)	349 (5)	2 (1)
H(22)	175 (4)	-271 (5)	130 (6)	3 (1)
H(31)	368 (3)	-54 (4)	66 (5)	1 (1)
H(32)	341 (4)	104 (5)	13 (5)	2 (1)
H(5)	182 (4)	149 (5)	468 (5)	3 (1)
H(61)	384 (4)	32 (5)	515 (6)	3 (1)
H(62)	482 (5)	189 (6)	411 (7)	5 (1)
H(63)	434 (5)	267 (6)	623 (7)	5 (1)
H(71)	209 (4)	372 (6)	265 (6)	4 (1)
H(72)	331 (5)	459 (6)	491 (7)	5 (1)
H (73)	377 (5)	385 (6)	265 (7)	5 (1)
HW(1)	581 (11)	464 (15)	-22(17)	17 (4)
HW(2)	632 (10)	380 (12)	125 (13)	3 (2)
HW(3)	709 (12)	510 (14)	99 (14)	5 (2)

out with the program system EXTL (Syntex) on an Eclipse computer (Data General) with 64 K byte memory.

Discussion. This structure determination is part of a series on octahedral bis(iminodiacetato)chromium(III) complexes with different substituents at the N atoms. An H atom as the smallest substituent in $\mathrm{K}[\mathrm{Cr}\{\mathrm{HN}$ $\left.\left.\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right\}_{2}\right] .3 \mathrm{H}_{2} \mathrm{O}$ yielded a cis configuration for the N atoms (Mootz \& Wunderlich, 1980), while from model considerations this seems less likely for bulky substituents.

Fig. 1. The anion of the complex $\mathrm{Na}\left[\mathrm{Cr}\left\{\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{N}\left(\mathrm{CH}_{3}-\right.\right.\right.$ $\left.\left.\mathrm{COO})_{2}\right\}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with bond lengths (\AA). The e.s.d.'s are $0.002 \AA$ for $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{N}$ and $0.004-0.005 \AA$ otherwise. The Cr atom is located at a center of symmetry. The heavy atoms are represented by thermal ellipsoids of 50% probability (ORTEP II, Johnson, 1976). The isotropic temperature factor of the H atoms is set to $B=0.67 \AA^{2}$.

Table 3. Bond angles and non-bonding distances in $\mathrm{Na}\left[\mathrm{Cr}\left\{\left(i-\mathrm{C}_{3} \mathrm{H}_{3}\right) \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right\}_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$

Cr and Na atoms are located at centers of symmetry. Symmetry code: (i) $-x,-y,-z$; (ii) $-x,-y, 1-z$.
(a) Angles $\left({ }^{\circ}\right)$ in the complex anion (the e.s.d.'s are 0.1° at Cr , 0.2° at O and N , and 0.3° at C atoms)

$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{O}(2)$	92.7	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	109.1
$\mathrm{O}(1)-\mathrm{Cr}-\mathrm{N}$	83.7	$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(5)$	110.0
$\mathrm{O}(2)-\mathrm{Cr}-\mathrm{N}$	79.7	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)$	113.3
$\mathrm{Cr}-\mathrm{O}(1)-\mathrm{C}(1)$	116.9	$\mathrm{~N}-\mathrm{C}(3)-\mathrm{C}(4)$	108.6
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	117.3	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	115.9
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(5)$	123.7	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(6)$	121.3
$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	119.0	$\mathrm{O}(6)-\mathrm{C}(4)-\mathrm{O}(2)$	122.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	113.5	$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{Cr}$	115.2
$\mathrm{Cr}-\mathrm{N}-\mathrm{C}(2)$	105.0	$\mathrm{~N}-\mathrm{C}(5)-\mathrm{C}(6)$	112.3
$\mathrm{Cr}-\mathrm{N}-\mathrm{C}(3)$	102.6	$\mathrm{~N}-\mathrm{C}(5)-\mathrm{C}(7)$	112.2
$\mathrm{Cr}-\mathrm{N}-\mathrm{C}(5)$	116.2	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	110.3

(b) Distances (\AA) involving the Na^{+}ion (the e.s.d.'s are $0.002-$ 0.003 A)

$\mathrm{Na}-\mathrm{O}\left(2^{2}\right)$	2.531	$\mathrm{Na}-\mathrm{O}\left(6^{1}\right)$	2.589
$\mathrm{Na}-\mathrm{O}\left(5^{\text {II }}\right)$	2.305		

(c) Angles $\left({ }^{\circ}\right)$ at the Na^{+}ion (the e.s.d.'s are 0.1°)

$\mathrm{O}\left(2^{1}\right)-\mathrm{Na}-\mathrm{O}\left(5^{\mathrm{II}}\right)$	93.5	$\mathrm{O}\left(5^{\mathrm{II}}\right)-\mathrm{Na}-\mathrm{O}\left(6^{1}\right)$	99.4
$\mathrm{O}\left(2^{1}\right)-\mathrm{Na}-\mathrm{O}\left(6^{\prime}\right)$	51.3		
(d) Angles $\left(^{\circ}\right)$ of the water molecule (the e.s.d.'s are $\left.10^{\circ}\right)$			
$\mathrm{H} W(1)-\mathrm{O} W-\mathrm{H} W(2)$	170	$\mathrm{H} W(2)-\mathrm{O} W-\mathrm{H} W(3)$	81
$\mathrm{H} W(1)-\mathrm{O} W-\mathrm{H} W(3)$	90		

Fig. 2. Description of the water structure with weak hydrogen bonds and proton disorder. The thermal ellipsoids are at a level of 25% probability. The temperature factor of the H atoms is set to $B=1.0 \AA^{2}$. The e.s.d.'s are: $0.007 \AA(\mathrm{O} \cdots \mathrm{O}), 0.09-0.12 \AA$ $(\mathrm{O}-\mathrm{H}, \mathrm{O} \cdots \mathrm{H})$ and $10^{\circ}(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$. Symmetry code: (i) $1+x$, $1+y, z$; (ii) $1-x,-y,-z$.

In Fig. 1 the anion is displayed with the main bond lengths; bond angles are listed in Table 3. The point symmetry of the anion is $\overline{1}$ and the structure is in a trans configuration. Ring constraints and steric hindrances influence the geometry of the molecule. The octahedral coordination of the Cr atom is distorted up to 10.3° from ideal angles with $\mathrm{Cr}-\mathrm{O}$ 1.956, $1.972 \AA$ and $\mathrm{Cr}-\mathrm{N} 2.118 \AA$. The two symmetry-independent five-membered rings at the Cr atom are puckered up to $0.1 \AA$ [involving $\mathrm{O}(1)$] and $0.3 \AA$ [involving $\mathrm{O}(2)$]. The angles at the N atom deviate up to 7° from tetrahedral coordination. The geometry of the H atoms is in the expected range.

The Na^{+}ion is surrounded by four complex anions with six short $(<2.6 \AA) \mathrm{Na} \cdots \mathrm{O}$ distances in a considerably distorted octahedral coordination. $\mathrm{O}(2)$ and $\mathrm{O}(6)$ of the same molecule coordinate one Na atom. The water molecule forms weak $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (see Table 3 and Fig. 2) to two complex anions and to a symmetry-related water molecule. This results in a water structure which remains questionable. $\mathrm{H} W(2)$ and $\mathrm{H} W(3)$ were refined with occupancy factors of 0.5 , but no split atom position of $\mathrm{H} W(1)$ could be obtained, although disorder of this atom is indicated by its high B value.

The authors thank Professor H.-H. Schmidtke and Dr R. Wernicke for a sample.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71-98. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Mootz, D. \& Wunderlich, H. (1980). Acta Cryst. B36, 445-447.
Wernicke, R., Schmidtre, h.-h. \& Hoggard, P. E. (1977). Inorg. Chim. Acta, 24, 145-148.

Wunderlich, H. \& Mootz, D. (1977). Fourth European Crystallographic Meeting, Oxford, England. Abstract PI. 64.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34977 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

